ðŸĪ” Q: Why is only about 10% of energy transferred from one trophic level to another? Why not all of it?

 


ðŸĪ·‍♀️āļŠāļ‡āļŠัāļĒāļˆัāļ‡! āļ—āļģāđ„āļĄāļžāļĨัāļ‡āļ‡āļēāļ™āļ–ึāļ‡āļ–่āļēāļĒāļ—āļ­āļ”āđ„āļ›āđāļ„่ 10%?

(āļ—āļģāđ„āļĄāļžāļĨัāļ‡āļ‡āļēāļ™āļ–ึāļ‡āļ–่āļēāļĒāļ—āļ­āļ”āļˆāļēāļāļĢāļ°āļ”ัāļšāđ‚āļ āļŠāļ™āļēāļāļēāļĢāļŦāļ™ึ่āļ‡āđ„āļ›āļĒัāļ‡āļ­ีāļāļĢāļ°āļ”ัāļšāļŦāļ™ึ่āļ‡āđ€āļžีāļĒāļ‡ 10%? āļ—āļģāđ„āļĄāđ„āļĄ่āļ—ั้āļ‡āļŦāļĄāļ”āļĨ่āļ°?)


ðŸ’Ą A: The Mystery of the Missing Energy! āđ„āļ‚āļ›āļĢิāļĻāļ™āļēāļžāļĨัāļ‡āļ‡āļēāļ™āļ—ี่āļŦāļēāļĒāđ„āļ›! ðŸ•ĩ️‍♂️

Hey there! Great question! It's a super important concept in understanding how ecosystems work. Let's break down why so much energy seems to "disappear" as it moves up the food chain. āļŠāļ§ัāļŠāļ”ีāļ„่āļ°! āđ€āļ›็āļ™āļ„āļģāļ–āļēāļĄāļ—ี่āļ”ีāļĄāļēāļāđ€āļĨāļĒāļ„่āļ°! āļĄัāļ™āđ€āļ›็āļ™āđāļ™āļ§āļ„ิāļ”āļ—ี่āļŠāļģāļ„ัāļāļĄāļēāļāđƒāļ™āļāļēāļĢāļ—āļģāļ„āļ§āļēāļĄāđ€āļ‚้āļēāđƒāļˆāļāļēāļĢāļ—āļģāļ‡āļēāļ™āļ‚āļ­āļ‡āļĢāļ°āļšāļšāļ™ิāđ€āļ§āļĻ āđ€āļĢāļēāļĄāļēāļ”ูāļัāļ™āļ§่āļēāļ—āļģāđ„āļĄāļžāļĨัāļ‡āļ‡āļēāļ™āļˆāļģāļ™āļ§āļ™āļĄāļēāļāļ–ึāļ‡āļ”ูāđ€āļŦāļĄืāļ­āļ™ "āļŦāļēāļĒāđ„āļ›" āđ€āļĄื่āļ­āļĄัāļ™āđ€āļ„āļĨื่āļ­āļ™āļ—ี่āļ‚ึ้āļ™āđ„āļ›āļ•āļēāļĄāļŦ่āļ§āļ‡āđ‚āļ‹่āļ­āļēāļŦāļēāļĢ

The short answer is that organisms use up most of the energy they consume for their own life processes, and a lot is lost as heat! 😊

āļ„āļģāļ•āļ­āļšāļŠั้āļ™āđ† āļ„ืāļ­ āļŠิ่āļ‡āļĄีāļŠีāļ§ิāļ•āđƒāļŠ้āļžāļĨัāļ‡āļ‡āļēāļ™āļŠ่āļ§āļ™āđƒāļŦāļ่āļ—ี่āļšāļĢิāđ‚āļ āļ„āđ€āļ‚้āļēāđ„āļ›āđ€āļžื่āļ­āļāļĢāļ°āļšāļ§āļ™āļāļēāļĢāļ”āļģāļĢāļ‡āļŠีāļ§ิāļ•āļ‚āļ­āļ‡āļ•ัāļ§āđ€āļ­āļ‡ āđāļĨāļ°āļžāļĨัāļ‡āļ‡āļēāļ™āļˆāļģāļ™āļ§āļ™āļĄāļēāļāļˆāļ°āļŠูāļāđ€āļŠีāļĒāđ„āļ›āđƒāļ™āļĢูāļ›āļ‚āļ­āļ‡āļ„āļ§āļēāļĄāļĢ้āļ­āļ™!

The Journey of Energy: From Sun to Predator (āļāļēāļĢāđ€āļ”ิāļ™āļ—āļēāļ‡āļ‚āļ­āļ‡āļžāļĨัāļ‡āļ‡āļēāļ™: āļˆāļēāļāļ”āļ§āļ‡āļ­āļēāļ—ิāļ•āļĒ์āļŠู่āļœู้āļĨ่āļē) ☀️➡️ðŸŒŋ➡️🐇➡️ðŸĶŠ

First, remember that energy flows unidirectionally (āđ„āļŦāļĨāļ—ิāļĻāļ—āļēāļ‡āđ€āļ”ีāļĒāļ§) through ecosystems. The ultimate source for most life on Earth is the sun (āļ”āļ§āļ‡āļ­āļēāļ—ิāļ•āļĒ์) (Wikipedia contributors, n.d.-b).

  1. Producers (āļœู้āļœāļĨิāļ•): Plants (āļžืāļŠ), algae (āļŠāļēāļŦāļĢ่āļēāļĒ), and some bacteria capture this solar energy via photosynthesis (āļāļēāļĢāļŠัāļ‡āđ€āļ„āļĢāļēāļ°āļŦ์āļ”้āļ§āļĒāđāļŠāļ‡), converting it into chemical energy (like sugars) stored in their bodies (NEXT IAS Team, 2024). They are the starting point!
  2. Consumers (āļœู้āļšāļĢิāđ‚āļ āļ„): When an herbivore (āļŠัāļ•āļ§์āļิāļ™āļžืāļŠ) eats a plant, or a carnivore (āļŠัāļ•āļ§์āļิāļ™āđ€āļ™ื้āļ­) eats an herbivore, that chemical energy is transferred. This happens through food chains (āļŦ่āļ§āļ‡āđ‚āļ‹่āļ­āļēāļŦāļēāļĢ – a straight line of who eats whom) and more complex food webs (āļŠāļēāļĒāđƒāļĒāļ­āļēāļŦāļēāļĢ – interconnected chains) (Singh, n.d.).

The "10% Rule": A General Guideline (āļāļŽ 10%: āđāļ™āļ§āļ—āļēāļ‡āļ—ั่āļ§āđ„āļ›) 📏

The transfer of energy between these trophic levels (āļĢāļ°āļ”ัāļšāđ‚āļ āļŠāļ™āļēāļāļēāļĢ – feeding levels) is surprisingly inefficient.

  • On average, only about 10% of the total energy available at one trophic level gets passed on to the next (TutorChase, n.d.). This is famously known as the "10% rule" or the "ten percent law."
  • It's important to note that this is an average. The actual Trophic Level Transfer Efficiency (TLTE) can range from about 5% to 20%, depending on the specific ecosystem and the organisms involved (Boundless, n.d.; McIvor, 2024).

So, if a plant has 1000 Joules of energy, the herbivore that eats it might only get about 100 Joules stored in its body. And a carnivore eating that herbivore might only get 10 Joules! 📉

So, Where Does All That Energy Go? (āđāļĨ้āļ§āļžāļĨัāļ‡āļ‡āļēāļ™āļ—ั้āļ‡āļŦāļĄāļ”āļŦāļēāļĒāđ„āļ›āđ„āļŦāļ™?) ðŸ’ĻðŸ”ĨðŸĶīðŸ’Đ

Here are the main reasons why 100% of the energy doesn't make it to the next level (Mani Kanth, 2018; McIvor, 2024):

  1. Metabolic Processes & Heat Loss (āļāļĢāļ°āļšāļ§āļ™āļāļēāļĢāđ€āļœāļēāļœāļĨāļēāļāđāļĨāļ°āļāļēāļĢāļŠูāļāđ€āļŠีāļĒāļ„āļ§āļēāļĄāļĢ้āļ­āļ™) ðŸ”Ĩ:
    • Organisms are busy! They use a HUGE chunk of the energy they consume just to stay alive. Think about:
      • Respiration (āļāļēāļĢāļŦāļēāļĒāđƒāļˆ): Converting food into usable energy.
      • Movement (āļāļēāļĢāđ€āļ„āļĨื่āļ­āļ™āđ„āļŦāļ§): Running, flying, swimming, even just moving leaves.
      • Maintaining Body Heat (āļāļēāļĢāļĢัāļāļĐāļēāļ­ุāļ“āļŦāļ ูāļĄิāļĢ่āļēāļ‡āļāļēāļĒ): Especially for warm-blooded animals (endotherms - āļŠัāļ•āļ§์āđ€āļĨืāļ­āļ”āļ­ุ่āļ™) like birds and mammals. They use a lot more energy to keep warm compared to cold-blooded animals (ectotherms - āļŠัāļ•āļ§์āđ€āļĨืāļ­āļ”āđ€āļĒ็āļ™) like insects or fish (Boundless, n.d.).
    • A fundamental principle in physics (the second law of thermodynamics) tells us that whenever energy is converted from one form to another, some of it is lost as heat to the environment. This metabolic heat isn't usable by the next trophic level.
  2. Growth and Reproduction (āļāļēāļĢāđ€āļˆāļĢิāļāđ€āļ•ิāļšāđ‚āļ•āđāļĨāļ°āļāļēāļĢāļŠืāļšāļžัāļ™āļ˜ุ์) ðŸŒą➡️ðŸ‘ķ:
    • Some energy goes into building new tissues (growing bigger) and creating offspring. Only the energy that becomes biomass (āļŠีāļ§āļĄāļ§āļĨ – the actual body material) is potentially available for the next level to eat.
  3. Uneaten Parts (āļŠ่āļ§āļ™āļ—ี่āđ„āļĄ่āđ„āļ”้āļิāļ™) ðŸĶīðŸŠĩ:
    • Predators don't usually eat every single bit of their prey. Bones, fur, feathers, shells, roots, or tough woody stems often get left behind. The energy stored in these parts isn't transferred.
  4. Incomplete Digestion & Waste (āļāļēāļĢāļĒ่āļ­āļĒāđ„āļĄ่āļŠāļĄāļšูāļĢāļ“์āđāļĨāļ°āļ‚āļ­āļ‡āđ€āļŠีāļĒ) ðŸ’Đ:
    • Even the parts that are eaten might not be fully digestible. The energy in undigested food is expelled as waste products like faeces (āļ­ุāļˆāļˆāļēāļĢāļ°) and urine (āļ›ัāļŠāļŠāļēāļ§āļ°). This energy is lost to the consumer.
  5. Non-Predatory Death (āļāļēāļĢāļ•āļēāļĒāđ‚āļ”āļĒāđ„āļĄ่āđ„āļ”้āļ–ูāļāļĨ่āļē) 💀🍂:
    • Some organisms die from disease, accidents, or old age before they get eaten. Their energy then goes to decomposers (āļœู้āļĒ่āļ­āļĒāļŠāļĨāļēāļĒ – like bacteria and fungi) rather than up the main food chain to higher consumers.

Net Production Efficiency (NPE) (āļ›āļĢāļ°āļŠิāļ—āļ˜ิāļ āļēāļžāļāļēāļĢāļœāļĨิāļ•āļŠุāļ—āļ˜ิ) 📊

Scientists use a measure called Net Production Efficiency (NPE) to describe how efficiently organisms at one trophic level convert the energy they receive into biomass that's then available to the next level. It considers energy lost through incomplete eating, respiration, and waste (Boundless, n.d.).

Why This Matters: Limits on Food Chains (āļ—āļģāđ„āļĄāļŠิ่āļ‡āļ™ี้āļ–ึāļ‡āļŠāļģāļ„ัāļ: āļ‚้āļ­āļˆāļģāļัāļ”āļ‚āļ­āļ‡āļŦ่āļ§āļ‡āđ‚āļ‹่āļ­āļēāļŦāļēāļĢ) ⛓️

This massive energy loss at each step is the reason why food chains are usually quite short – typically no more than 4 to 6 trophic levels (NEXT IAS Team, 2024). There's simply not enough energy left to support viable populations at very high trophic levels. The closer an organism is to the producer level, the more energy is available to it.

In a nutshell (āļŠāļĢุāļ›āļ‡่āļēāļĒāđ†āļ„ืāļ­): Most of the energy an organism gets is used to live, move, and keep warm, or it's in parts that don't get eaten or can't be digested. Only a tiny fraction becomes "meat on the bones" (biomass) for the next predator. This is why the 10% rule is a key concept in ecology! ðŸŒŋ➡️🐇 (100%) ➡️ ðŸĶŠ (10%) ➡️ ðŸĶ… (1%).


Further Thought (āļ„ิāļ”āļ•่āļ­āļĒāļ­āļ”) ðŸĪ”:

Given these variations, it could be interesting to compare the ecological efficiency (percentage of energy transferred) in different environments, like aquatic (āđƒāļ™āļ™้āļģ) vs. terrestrial (āļšāļ™āļšāļ) ecosystems, and explore what makes them different!


Bibliography: āļšāļĢāļĢāļ“āļēāļ™ุāļāļĢāļĄ ðŸ“š

Boundless. (n.d.). 46.2C: Transfer of Energy between Trophic Levels. Biology LibreTexts. Retrieved from https://bio.libretexts.org/@go/page/14227

Mani Kanth. (2018, April 16). Energy flow in ecosystem [PPT]. SlideShare. https://www.slideshare.net/ManiKanth/energy-flow-in-ecosystem-96048230

McIvor, L. M. (2024, November 21). Efficiency of Energy Transfer (Cambridge (CIE) IGCSE Co-ordinated Sciences (Double Award): Revision Note). Save My Exams. Retrieved from https://www.savemyexams.co.uk/gcse/coordinated-science-cie/revision-notes/18-organisms--their-environment/energy--feeding-relationships/efficiency-of-energy-transfer/

NEXT IAS Team. (2024, August 17). Energy Flow in Ecosystem: Food Chain, Food Web & More. NEXT IAS. https://www.nextias.com/blog/energy-flow-in-ecosystem

Singh, A. K. (n.d.). FOOD CHAINS AND FOOD WEBS. Dr. Shyama Prasad Mukherjee University. Retrieved from https://drspsmu.ac.in/wp-content/uploads/2020/05/Food-Chains-and-Food-Webs.pdf

TutorChase. (n.d.). What is the 10% rule in energy transfer between trophic levels? Retrieved from https://www.tutorchase.com/answers/ib/biology/what-is-the-10-rule-in-energy-transfer-between-trophic-levels

Wikipedia contributors. (n.d.-a). Bioaccumulation. In Wikipedia. Retrieved October 26, 2024, from https://en.wikipedia.org/w/index.php?title=Bioaccumulation&oldid=1291696167 (Note: While "Bioaccumulation" is in the list, the primary focus of this answer is energy flow; including for completeness of provided bibliography.)

Wikipedia contributors. (n.d.-b). Energy flow (ecology). In Wikipedia. Retrieved October 26, 2024, from https://en.wikipedia.org/w/index.php?title=Energy_flow_(ecology)&oldid=1292001618

(Note: The Purdue University & USEPA Region 5 citation was omitted as it pertains specifically to bioaccumulation, not directly to the 10% energy transfer rule explained here, though it was in your provided list.)


 

Comments

Popular posts from this blog

Science Time Machine: Awesome Discoveries! 🚀 (āđ€āļ„āļĢื่āļ­āļ‡āļĒ้āļ­āļ™āđ€āļ§āļĨāļēāļ§ิāļ—āļĒāļēāļĻāļēāļŠāļ•āļĢ์: āļāļēāļĢāļ„้āļ™āļžāļšāļŠุāļ”āđ€āļˆ๋āļ‡!)

What is Matter All Around Us? āļŠāļŠāļēāļĢāļ„ืāļ­āļ­āļ°āđ„āļĢ? ðŸĪ”

Health Education Quiz: The Nervous & Endocrine Systems